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A B S T R A C T

Estimation of turbulent heat fluxes by assimilating sequences of land surface temperature (LST) measurements
into variational data assimilation (VDA) frameworks has been the subject of several studies. The VDA approaches
estimate turbulent heat fluxes by minimizing the difference between LST observations and estimations from the
heat diffusion equation. The VDA methods have been tested only with high temporal resolution LST observations
(e.g., from geostationary satellites) when applied at regional scales. Geostationary satellites can capture the
diurnal cycle of LST, but they have a relatively low spatial resolution and mainly focus on low latitudes. To
overcome these shortcomings, this study assimilates high spatial resolution LST data from polar orbiting sa-
tellites (e.g., Moderate Resolution Imaging Spectroradiometer, MODIS) into the combined-source (CS) and dual-
source (DS) VDA schemes. An expression is developed to obtain an a priori evaporative fraction (EF) estimate
from leaf area index (LAI) or apparent thermal inertia (ATI). The a priori EF estimate is used as an initial guess in
the VDA approach. The results indicate that the VDA method is able to find the optimal value of EF by assim-
ilating the low-temporal resolution MODIS LST data. The predicted turbulent heat fluxes from VDA are com-
pared with the measurements from the large-aperture scintillometer at three sites (Arou, Daman, and Sidaoqiao)
in the Heihe River Basin (located in northwest China). The findings indicate that the CS and DS VDA models
perform well in various hydrological and vegetative conditions. The three-site-average root mean square errors
(RMSEs) of sensible and latent heat fluxes estimates from the CS scheme are 37.44Wm−2 and 94.30Wm−2,
respectively. The DS model reduces the abovementioned RMSEs by 19.82% and 21.37%, respectively. Overall,
the results show that using the a priori EF estimate from the proposed expression in the VDA approach eliminates
the need for the high resolution LST data from geostationary satellites, and allows the VDA method to estimate
turbulent heat fluxes by assimilating LST data from polar orbiting satellites. Finally, several numerical tests are
conducted to assess the effect of LST temporal sampling on the turbulent heat fluxes estimates. The results show
that the LST measurement at 1400 Local Time (LT) has the most amount of information for partitioning the
available energy into sensible and latent heat fluxes.

1. Introduction

The sensible (H) and latent (LE) heat fluxes affect the land-atmo-
sphere interaction and boundary layer development. Their accurate
estimation is required for the efficient use and management of water

resources, irrigation scheduling, and weather prediction (Bastiaanssen
et al., 2005; Williams et al., 2016; Li et al., 2017; Ma et al., 2018).
Turbulent heat fluxes can be measured by different techniques such as
the eddy covariance system, lysimeter, Bowen ratio method, and large-
aperture scintillometer (Liu et al., 2016). These measurements have
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limited spatial and temporal coverage. Thus, various models have been
developed to estimate turbulent heat fluxes over large-scale domains.

Bateni and Entekhabi (2012a) showed that sequences of land sur-
face temperature (LST) observations contain implicit information on
the partitioning of the available energy among the surface energy bal-
ance (SEB) components. LST observations have been utilized in five
main groups of studies to estimate turbulent heat fluxes. The first group
uses LST to solve the SEB equation and estimate the surface energy
fluxes (Bastiaanssen et al., 1998a, 1998b; Su, 2002; Liu et al., 2007; Jia
et al., 2009; Song et al., 2016a; Ma et al., 2018). The second group
attempts to estimate the latent heat flux by using the empirical re-
lationship between LST and vegetation indices such as normalized
differential vegetation index (NDVI), leaf area index (LAI), etc. (Jiang
and Islam, 2001, 2003; Nishida et al., 2003; Wang et al., 2006; Tang
et al., 2010; Sun et al., 2013; Zhu et al., 2017). The third group in-
corporates LST observations into the Penman-Monteith equation to
estimate turbulent heat fluxes (Mallick et al., 2013, 2014). The fourth
group (known as the land data assimilation system [LDAS]) estimates
surface heat fluxes by the ensemble Kalman filter (EnKF) methodology
(Peters-Lidard et al., 2011; Xu et al., 2011a, 2011b, 2015a, 2018a;
Bateni and Entekhabi, 2012b; Carrera et al., 2015; Xia et al., 2014a,
2014b). The fifth group assimilates sequences of LST measurements
into the variational data assimilation (VDA) frameworks to estimate
surface heat fluxes (Castelli et al., 1999; Boni et al., 2001; Caparrini
et al., 2003, 2004a, 2004b; Crow and Kustas, 2005; Qin et al., 2007;
Sini et al., 2008; Bateni and Liang, 2012; Bateni et al., 2013a; Xu et al.,
2015b, 2016; Abdolghafoorian et al., 2017).

High temporal resolution LST data from geostationary satellites
have been successfully assimilated in the VDA approaches to estimate
turbulent heat fluxes (Sini et al., 2008; Bateni et al., 2013b, 2014; Xu
et al., 2014). Geostationary satellites can capture the diurnal cycle of
LST, and therefore significantly advance the ability of VDA approaches.
However, they have relatively low spatial resolution and their coverage
mainly focuses on low- and mid-latitudes (Zhang et al., 2014). In con-
trast, LST data from polar orbiting satellites have high spatial resolution
as well as global coverage. Thus, it is a significant achievement if tur-
bulent heat fluxes can be estimated by assimilating low temporal re-
solution LSTs from polar orbiting satellites.

In this study, the Moderate Resolution Imaging Spectroradiometer
(MODIS) LST product (from Aqua and Terra platforms) with
1 km×1 km spatial resolution and 2-revisit during daytime are as-
similated in the VDA assimilation of Bateni et al. (2013a). The unknown
parameters of the VDA approach are the neutral bulk heat transfer
coefficient (CHN) and evaporative fraction (EF). CHN scales the sum of
turbulent heat fluxes (H+ LE), and EF scales their partitioning (i.e.,
EF= LE/(H+ LE)). An expression is proposed to parameterize EF in
terms of LAI or apparent thermal inertia (ATI) (Wang et al., 2006; Yao
et al., 2013; Zhou and Wang, 2016). The a priori EF estimate from the
proposed expression is used as an initial guess in the VDA approach.
The VDA system finds the optimal values of CHN and EF (a posteriori EF
estimate) by minimizing the difference between measured and esti-
mated LST. The VDA approach is tested in the Heihe River Basin (HRB)
(located in northwestern China) under a variety of vegetative and hy-
drological conditions. The turbulent heat fluxes measurements from the
large-aperture scintillometer (LAS) at three sites (Arou, Daman, and
Sidaoqiao) in the HRB are used to validate the VDA estimates. More-
over, a number of numerical sensitivity tests are conducted to evaluate
the effect of LST temporal sampling on the turbulent heat fluxes esti-
mates.

This paper is organized as follows. Section 2 introduces the meth-
odology including the heat diffusion equation, combined- and dual-
source surface energy balance equations, EF parameterization scheme,
and adjoint state formulation. Section 3 explains the study area and
data. Section 4 presents the results and discussions, including the effect
of LST temporal sampling on the H and LE estimates. Finally, Section 5
reports the conclusions.

2. Methodology

2.1. Heat diffusion equation

The transport of heat through the soil column is governed by the
thermal diffusion equation,

=c T z t
t

K T z t
z

( , ) ( , )2

2 (1)

where T(z,t) is the soil temperature at depth z and time t, and K and c
are the soil heat conductivity (Wm−1 K−1) and heat capacity
(Jm−3 K−1), respectively (de Vries, 1963; Fourier, 1822). The heat
diffusion equation is solved by specifying the boundary conditions at
the top and bottom of the soil column. The boundary condition at the
top of soil column is obtained by using the surface forcing equation
−KdT(z= 0,t)/dz=G(z= 0,t), where G(z= 0,t) is the ground heat
flux at the land surface at time t (thereafter shown as G). The ground
heat flux is assumed to be zero at the bottom boundary of soil column.
At the bottom boundary, a Neumann boundary condition is im-
plemented as,

=dT l t dz( , )/ 0 (2)

where l is the depth of bottom boundary. According to Hu and Islam
(1995), soil temperature at the depth of 0.3–0.5m is almost invariant
over a daily time scale. Hence, l=0.5m is used in this study.

2.2. Surface energy balance (SEB)

2.2.1. Combined-source SEB scheme
The combined-source (CS) SEB model considers soil and vegetation

as a single energy source and can be written as (Bastiaanssen et al.,
1998a; Su, 2002),

= + +R H GLEN (3)

where H and LE are the sensible and latent heat fluxes (Wm−2), RN is
the net radiation (Wm−2), and G is the ground heat flux (Wm−2). RN
can be defined as,

= +R R R T(1 )N S L
4 (4)

where α is the surface albedo (–), and RS↓ and RL↓ are the incoming
shortwave and longwave radiation (Wm−2), respectively. ε is the sur-
face emissivity (–), σ is the Stefan-Boltzmann constant
(5.67×10−8Wm−2 K−4), and T is the land surface temperature (K).

The sensible heat flux is given by,

=H c C U T T( )p H a (5)

where ρ is the air density (kgm−3), cp is the air heat capacity
(1012 Jkg−1 K−1), and U and Ta are the reference-height wind speed
(m s−1) and air temperature (K), respectively. CH is the heat transfer
coefficient (-), which can be written as the product of the heat transfer
coefficient under neutral atmospheric condition (CHN) and the atmo-
spheric stability correction function (f(Ri)), i.e., CH= CHNf(Ri), where
Ri is the Richardson number.

Herein, the atmospheric correction function proposed by Caparrini
et al. (2003) is used because it performed well in previous studies (Crow
and Kustas, 2005; Sini et al., 2008; Bateni and Liang, 2012; Bateni et al.,
2013a, 2013b, 2014; Xu et al., 2014, 2016; Abdolghafoorian et al.,
2017). CHN constitutes the first unknown parameter of the CS VDA
model. It mainly depends on the characteristics of the landscape, and is
set to be invariant in each monthly (30-day) period (Caparrini et al.,
2004a, 2004b).

The second unknown parameter of the CS SEB model is EF. Crago
(1996) and Gentine et al. (2007) showed that EF is almost constant for
daytime hours on days without precipitation. In this study, EF is as-
sumed to be constant during the daytime assimilation window
(09:00–18:00 LT) for each day so that latent heat flux can then be
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estimated by,

= HLE EF
1 EF (6)

Finally, G is calculated as the residual of the SEB equation (i.e.,
G= RN−H−LE).

2.2.2. Dual-source SEB scheme
The dual-source (DS) SEB model considers vegetation and soil as

different sources of energy, and is able to simulate soil-canopy inter-
action (Kustas et al., 1996; Kustas and Norman, 1999).

The SEB equations for the soil and canopy can be written as,

= + +R H GLENS S S (7a)

= +R H LENC C C (7b)

where HS, LES, and RNS are the sensible heat flux, latent heat flux, and
net radiation for the soil, respectively. HC, LEC, and RNC are the sensible
heat flux, latent heat flux, and net radiation for the canopy, respec-
tively.

Net radiation for soil (RNS) and canopy (RNC) are estimated by es-
tablishing a balance between the longwave and shortwave radiation for
each component,

= +R 1 R R T( )NS S S L S S
4 (8a)

= +R 1 R R T( )NC C S L C C
4 (8b)

where αc and αs are the surface albedo for the canopy and soil, and εc
and εs are the canopy and soil emissivity. The total net radiation (RN) is
given by the weighted average of net radiation from the canopy and
soil,

= +R f R f R(1 )N c NC c NS (9)

where fc is the vegetation cover fraction and can be obtained from LAI
by (Norman et al., 1995; Anderson et al., 1997),

=f 1 exp( 0.5LAI)c (10)

The sensible heat fluxes can be represented by a conductance net-
work that includes nodes at the soil, the canopy leaves, the within ca-
nopy air, and air above the canopy (Caparrini et al., 2004a, 2004b;
Bateni and Liang, 2012). The network is characterized by the turbulent
heat transfer coefficients CHS (for heat transfer from soil to air within
the canopy) and CHC (for heat transfer from leaves to air within the
canopy).

The sensible heat fluxes for soil (HS) and canopy (HC) are given by,

=H C C U T T( )S P HS W S W (11a)

=H C C U T T( )C P HC W C W (11b)

where TS and TC are the soil and canopy temperatures, and UW and TW
are the wind speed and air temperature within the canopy. To reduce
the unknown parameters of the DS VDA model, CHS and CHC are related
to CHN (Bateni and Liang, 2012). Equations for the calculation of TS, TC,
and TW can be found in Bateni and Liang (2012).

The total sensible heat flux (H) is given by the weighted average of
sensible heat fluxes from the canopy and soil,

= +H f H f H(1 )c C c S (12)

Other unknown parameters of the DS VDA model are the soil and
canopy evaporative fraction (EFS and EFC). The LST is calculated with a
composite of the soil and canopy temperatures as (Anderson et al.,
1997),

= +T f T f T[ (1 ) ]c c SC
4 4 0.25 (13)

2.3. Parameterization of evaporative fraction

The CS VDA approach begins with an initial value of EF (a priori EF
estimate), and improves it via assimilation of LST data. Dirmeyer et al.
(2000) and Lu et al. (2017) parametrized EF in terms of soil wetness
index (SWI) by using the Arctan function. Sini et al. (2008) character-
ized EF in terms of antecedent precipitation index (API) (as an indicator
of soil moisture) by the Arctan function. Following these studies, we
formulated EF in terms of environmental index (τ) using the following
expression:

= +EF EF 2(EF EF ) Arctan( )min
max min

(14)

where EFmax and EFmin are the maximum and minimum EF values for a
specific land cover type (e.g., cropland, forest, grassland, barren land,
etc.), φ is the calibration coefficient, and τ is the environmental index.
The magnitudes of EFmax, EFmin, and φ for different land cover types
over the HRB are given in Section 4.1.

EF is affected mainly by soil moisture and LAI (Dirmeyer et al.,
2000; Wang et al., 2006; Bateni et al., 2013a; Zhou and Wang, 2016).
Over the bare soil, EF is controlled mainly by soil moisture (Dirmeyer
et al., 2000). The high spatial resolution (1 km) soil moisture is un-
available over the HRB, and therefore ATI is used as an indicator of soil
moisture (Verstraeten et al., 2006; Van doninck et al., 2011; Qin et al.,
2013). In this study, ATI is used to parameterize τ over the barren land
(Eq. (15a)). Over the vegetated areas (cropland, grassland, and forest),
LAI is used to estimate τ (Eq. (15b)).

= ATI ATI
ATI ATI

For barren landmin

max min (15a)

= LAI LAI
LAI LAI

For vegetated landmin

max min (15b)

where ATImax and ATImin are the maximum and minimum of ATI, re-
spectively. LAImax and LAImin are the maximum and minimum of LAI,
respectively.

In this study, τ is computed on a daily basis from Eqs. (15a) and
(15b). Then, it is substituted in Eq. (14) to calculate EF. The a priori EF
estimate from Eq. (14) is used as an initial guess in the CS VDA ap-
proach to find a posterior (optimal) EF value. It is also used as an initial
guess for EFS and EFC in the DS VDA system.

ATI is calculated by (Short and Stuart Jr., 1982),

=ATI C
A

1
(16)

where C is the solar correction factor (-), A is the amplitude of diurnal
temperature cycle (K), and α is the surface albedo (-).

Solar correction factor (C) can be estimated from,

= +C sin sin (1 tan tan ) cos cos arcos( tan tan )2 2 1
2 (17)

where ϕ is the latitude (rad) of the Earth and δ is the solar declination
(rad) of the Earth, which can be calculated from,

= +
+

+

0.006918 0.399912 cos( ) 0.070257 sin( )
0.0067587 cos(2 ) 0.000907 sin(2 )
0.002697 cos(3 ) 0.00148 sin(3 ) (18)

where Г is the day angle (rad), which is computed by Г=2π(nd−1)/
365.25, and nd is the day number (-).

The diurnal temperature cycle is approximated by a sinusoidal
curve as follows (Van doninck et al., 2011),

= +T t T A t( )
2

cos( ) (19)

where T(t) is the surface temperature at time t (K), T is the daily mean
surface temperature (K), ω is the angular velocity of Earth's rotation
(rad/s), and ψ is the phase angle (rad), which can be calculated from
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Van doninck et al. (2011). A and T can be computed in each pixel for
each day by the following equations,

= = = =

= =

A
n t T t t T t

n t t
2( cos( ) ( ) cos( ) ( ))

cos ( ) ( cos( ))
i
n

i i i
n

i i
n

i

i
n

i i
n

i

1 1 1

1
2

1
2

(20)

= = =T
T t

n
cos( )i

n
i

A
i
n

i1 2 1
(21)

where n is the number of LST observations in each day (i=1, 2, …, n).
Van doninck et al. (2011) recommended that the day/night LST pairs be

used in Eqs. (20) and (21) when only two LST observations are avail-
able.

2.4. Adjoint state formulation

CHN and EF are the two key unknown parameters of the CS VDA
approach. The VDA approach finds the optimum values of the unknown
parameters (i.e., CHN and EF) by minimizing the difference between the
observed and estimated LST. The cost function (J) for the CS VDA
model can be written as,

Fig. 1. The land cover map over the HRB.

Table 1
List of eddy covariance (EC)/automatic weather station (AWS) observation sites over the HRB.

EC/AWS sites Observation period IGBP land cover Longitude (E) Latitude (N) Elevation (m) EBR

Arou 2012.12–2015.12 Grassland 100.46 38.04 3033 0.84
Dashalong 2013.8–2015.12 Grassland 98.94 38.84 3739 0.83
Daman 2012.9–2015.12 Cropland 100.37 38.85 1556 0.92
Cropland 2013.7–2015.10 Cropland 101.13 42.00 875 0.91
Guantan 2008.1–2012.3 Evergreen needleleaf forest 100.25 38.53 2835 0.89
Populus euphratica 2013.7–2015.12 Deciduous broadleaf forest 101.12 41.99 876 0.87
Mixed forest 2013.7–2015.12 Mixed forest 101.13 41.99 874 0.82
Sidaoqiao 2013.7–2015.12 Shrubland 101.13 42.00 873 0.96
Huazhaizi desert steppe 2012.6–2015.12 Barren/sparsely vegetated 100.31 38.76 1731 0.91
Shenshawo sandy desert 2012.6–2015.4 Barren/sparsely vegetated 100.49 38.78 1694 0.93
Bajitan Gobi 2012.6–2015.4 Barren/sparsely vegetated 100.37 38.85 1556 0.93
Barren land 2013.7–2015.3 Barren/sparsely vegetated 101.13 41.99 878 0.89

Note: EC= eddy covariance, AWS=automatic weather stations, IGBP= International Geosphere-Biosphere Programme, and EBR=energy balance ration for the
eddy covariance.
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The first term on the right-hand side measures the difference be-
tween the observed LST from MODIS (TOBS) and the predicted LST from
the heat diffusion equation (T). The second and third terms represent
the misfit between R and EF estimates and their priori values, respec-
tively. CHN is related to R via CHN= exp(R) to make it strictly positive.
The initial value of EF can be obtained from Eq. (14). The last term is
the heat diffusion equation, which is adjoined to the model by the La-
grange multiplier λ. D=K/C is the heat diffusion coefficient. KT-1, KR-1,

and KEF-1 are numerical constants, which determine the weight of each
term in the cost equation and control the convergence rate of the VDA
system. Following Bateni et al. (2013a), KT-1, KR-1, and KEF-1 are set to
0.01 K−2, 1000, and 1000, respectively.

Similarly, in the DS VDA approach, CHN, EFC, and EFS are found by
minimizing the difference between the LST observations and

Fig. 2. Measured evaporative fraction (EF) values by the 12 EC systems in the HRB (Table 1) versus environmental index (τ) for the cropland, grassland, forest, and
barren land.

Table 2
Estimated φ, EFmin, and EFmax values for each land cover type via the least-
square approach.

Land cover type φ EFmin EFmax

Forest 13 0.06 0.98
Cropland 7 0.45 0.96
Grassland 7 0.35 0.86
Barren land 2 0.17 0.67

Note: φ is the calibration coefficient (slope factor), and EFmin and EFmax are the
minimum and maximum evaporative fraction over each land cover type.

Fig. 3. Comparing the CHN estimates from the CS and DS VDA approaches. The
color of the points is mapped to the value of fc.
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estimations. The cost function for the DS VDA approach is defined as,
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+ +
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The first term on the right-hand side measures the difference be-
tween the observed LST from MODIS (TOBS) and the estimated LST from
Eq. (13). The second term is similar to that in the CS VDA system. The
third and fourth terms measure the difference between the soil and
canopy evaporative fraction estimates and their priori values, respec-
tively. In this study, the initial values of EFS and EFC are set to the EF
value obtained from Eq. (14). KT−1, KR−1, KEFs

−1, and KEFc
−1 are equal

to 0.01 K−2, 1000, 1000, and 1000, respectively (Bateni and Liang,
2012).

The optimum values of the unknown parameters of the CS VDA
approach (i.e., CHN and EF) are found by minimizing the cost function
presented in Eq. (22). Similarly, the optimum values of the unknown

parameters of the DS VDA system (i.e., CHN, EFS, and EFC) are found by
minimizing the cost function shown in Eq. (23).

To minimize the cost functions (i.e., Eqs. (22) and (23)), their first
variations (i.e., δJ=0) should be set to zero. In Eq. (22), we need to
minimize the first three terms and satisfy the heat diffusion constraint
simultaneously. Analogously, in Eq. (23), the first four terms should be
minimized, and the heat diffusion constraint should be fulfilled. Im-
posing δJ=0 leads to a number of equations (the so-called Euler-La-
grange equations), which should be solved simultaneously through an
iterative procedure on a monthly basis. These Euler-Lagrange equations
can be found in Bateni et al. (2013a) and Xu et al. (2014).

3. Study domain and data

The HRB is the second-largest inland river basin in northwest China.
It runs from south of the Qilian Mountains, through the central Hexi
corridor to the Northern League grassland, covering an area of ap-
proximately 1.43× 106 km2. The upstream of HRB has an elevation of
1000–5000m, a large temperature variation, and various vegetation
types. Fig. 1 shows the location of the HRB and its main land covers.
The land covers are mainly grassland/forest, barren-land/cropland, and
barren-land/forest in the upstream, midstream, and downstream of the
HRB, respectively (Zhong et al., 2014, 2015). The turbulent heat fluxes
measurements by the eddy covariance (EC) and LAS techniques are
available from “Heihe Watershed Allied Telemetry Experimental

Fig. 4. Spatial patterns of the a priori EFS (top), a posteriori EFS (middle), and SMAP surface soil moisture (bottom) for DOYs 121, 153, 204, 257, and 273 over the
HRB.

T. Xu et al. Remote Sensing of Environment 221 (2019) 444–461

449



Research” (HiWATER) launched in the HRB since 2012 (Li et al., 2013;
Liu et al., 2011; Xu et al., 2018b). The satellite and aerial remote sen-
sing data, in conjunction with ground-based measurements during this
experiment, significantly improve the observability of ecology and
hydrology in the HRB. The experiment data can be downloaded freely
at the Heihe Data Archive (http://www.heihedata.org/).

The hourly sensible and latent heat fluxes are measured by the EC
systems at 12 sites in the HRB (see Table 1). Sensible heat flux is also
measured by the LAS instrument in Arou (upstream), Daman (mid-
stream), and Sidaoqiao (downstream) sites (Fig. 1). Latent heat flux
(LE) in these sites is obtained as the residual of the SEB equation
(LE= RN−G−H) during the vegetation growing season. The net ra-
diation is measured by a four-component radiometer, and the ground
heat flux is obtained by a ground heat flux plate. The energy balance
ratio of sensible and latent heat fluxes from the EC system is also shown
in Table 1. The detailed data processing procedure can be found in Li
et al. (2018) and Xu et al. (2013).

The hourly micrometeorological data (wind speed, air temperature
and humidity, atmospheric pressure, and incoming shortwave and
longwave radiation) produced by the Weather Research and
Forecasting (WRF) model are used as inputs in the VDA system (Pan
et al., 2012). LST observations are obtained from the Moderate Re-
solution Imaging Spectroradiometer (MODIS) (i.e., MOD11A1 and
MYD11A1) with the spatial resolution of 1 km and frequency of 2 times
per day (https://ladsweb.nascom.nasa.gov/search/). Albedo and LAI
data are downloaded from the Global Land Surface Satellite (GLASS)
product (Xiao et al., 2014, 2016) (http://glass-product.bnu.edu.cn/).
Soil moisture data are obtained from the Soil Moisture Active Passive
(SMAP) product, with the spatial resolution of 9 km×9 km (https://
search.earthdata.nasa.gov/). The SMAP soil moisture product is not
used as input in the VDA approach. It is utilized as an independent
dataset to validate the EFs estimates.

Following de Vries (1963) and Chen (2008), the soil heat con-
ductivity (K) and heat capacity (c) are calculated from the soil type and
moisture. The soil type is found from the HRB Digital Soil Mapping
product (Song et al., 2016b).

4. Results and discussions

4.1. EF values for different land covers

Fig. 2 shows EF values from all the EC flux towers versus the en-
vironmental index (τ) for four land cover types: cropland, grassland,
forest, and barren land. The cropland is mainly covered by seeded
corns. The grassland consists mainly of alpine meadow. The forest is a
mixture of deciduous broadleaf forest, evergreen coniferous forests, and
shrub. The barren land consists of barren or sparsely vegetated lands. A
curve is fitted to the data points in each scatterplot in Fig. 2. The EF
observations (calculated from the EC systems) are collected mainly in
the growing season (May–September) from 2008 to 2015. Because of
the energy imbalance of the EC systems, the measured turbulent heat
fluxes are corrected for closure on a daily basis using the Bowen ratio
closure method (Twine et al., 2000).

In the vegetated areas (i.e., cropland, grassland, and forest), EF in-
creases rapidly at low τ values and reaches a plateau toward higher τ
values. Compared to the grassland and cropland, EF increases more
rapidly in the forest as τ increases. This occurs because forests have
stronger roots, and thus can uptake and transpire water from the soil
profile more robustly. For each land cover type, the parameters φ,
EFmin, and EFmax in Eq. (14) are determined by the least-square method
(see Table 2).

4.2. Neutral bulk heat transfer coefficient

The estimated CHN values from the CS and DS VDA approaches over
the HRB are shown in Fig. 3. The points are color-coded based on their
vegetation coverage fraction (fc) values. This allows comparing per-
formance of the CS and DS schemes for different canopy densities. The
CHN estimates from both the CS and DS schemes increase with the in-
crease of fc. The scatter plots mainly fall around the 1:1 line, and the
CHN values from the DS scheme is slightly larger than those of the CS
model. For low values of fc (fc < 0.2), the land surface is mainly
composed of soil and its heterogeneity is low. Hence, the discrepancy of
CHN estimates from the CS and DS VDA methods is negligible. With the

Fig. 5. Plot of estimated soil evaporative fraction (EFs), canopy evaporative fraction (EFc), and evaporative fraction (EF) values versus SMAP soil moisture for two
LAI classes (i.e., LAI < 1 and 1 < LAI < 2) (top) and two plant functional types (bottom) with one standard deviation variability in each soil moisture bin.
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increase of fc, the discrepancy of CS and DS CHN estimates grows. This
difference reaches its maximum when fc is around 0.5 where the land
surface is heterogeneous. This is because the CS model does not dis-
tinguish the difference between the soil and canopy temperatures and
treats the LST as a mixed effective temperature for the soil-vegetation
media. In contrast, the DS VDA scheme divides the LST into the soil and
canopy temperatures and considers the interactions of the soil and ca-
nopy. Therefore, the largest difference between the CS and DS CHN
estimates occurs at fc=0.5. When fc reaches about 0.8, the surface is
mainly composed of canopy and its heterogeneity is reduced. As a re-
sult, the discrepancy of the CHN estimates from the CS and DS schemes
is decreased.

Fig. 3 also shows that the CHN values from the DS VDA scheme are
slightly larger than those from the CS VDA scheme. This is due to the
different structures of the CS and DS models. The CHN values from the
CS and DS models can be related by,

=C C T T
T T

( ) ( )HN DS HN CS
a

W a (24)

Within the data assimilation window, the LST (T) is usually larger
than the air temperature within the vegetation canopy (TW). This leads
to (T− Ta) > (TW− Ta), and the CHN estimates from the DS VDA
scheme should be typically higher than those from the CS VDA scheme.

4.3. Evaporative fraction

Soil moisture is the key indicator of soil evaporative fraction (EFS)
(Dirmeyer et al., 2000; Gentine et al., 2007; Bateni et al., 2013b), and
therefore the spatial patterns of EFS estimates should be consistent with
those of soil moisture. To test the robustness of the DS VDA approach,
the a priori (obtained from Eq. (14)) and a posteriori (obtained from the
VDA approach) EFS maps are compared with the soil moisture data

Fig. 6. Scatterplot of hourly sensible heat flux estimates from the CS (left) and DS (right) VDA schemes versus measurements at the Arou, Daman, and Sidaoqiao sites
for DOYs 121–273 in 2015.
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from the SMAP mission. Fig. 4 shows the spatial distribution of a priori
(first row) and a posteriori (second row) EFS estimates as well as SMAP
soil moisture data (third row) over the HRB for Day of Year (DOYs) 121,
153, 204, 257, and 273. As shown, the DS VDA approach improves the
EFS estimates from Eq. (14) (first row), and patterns in the a posteriori
EFs estimates (second row) can capture those of soil moisture (third
row) more robustly. For example, there is a sharp gradient in soil
moisture in the south of the HRB (i.e., soil moisture is high (low) in
southeast (southwest) of the HRB) in DOYs 153, 204, and 257. Re-
markably, a distinct southwest-southeast gradient is observed in the
retrieved EFs values from the VDA approach, while the a priori EFS
estimates are higher southeast of the HRB and show no gradient. Both
the EFS and SMAP soil moisture maps show a sharp north-south gra-
dient. They are highest upstream of the HRB (in the south) due to the
heavy precipitation over the high altitude mountainous areas, but

decrease over midstream and downstream of the HRB because of low
precipitation. EFs and soil moisture are higher in midstream than
downstream due to relatively larger irrigated oasis areas in the mid-
stream.

Fig. 5 shows variations of EFs, EFc, and EF estimates versus soil
moisture for different LAI values. EFS, EFC, and EF estimates increase at
low soil moisture and reach a plateau toward higher values of soil
moisture. EFC increases mildly for sparser vegetation cover (i.e.,
LAI < 1), but rises sharply for denser canopy cover (i.e., 1 < LAI <
2). Dense canopies have a strong root uptake potential and can extract
moisture from the soil profile more robustly to accelerate the tran-
spiration rate. Unlike EFC, the variation of EFS versus soil moisture is
insensitive to the amount of LAI, and EFS estimates have almost the
same rate of increase for both LAI classes. EFS values for denser canopy
cover (1 < LAI < 2) are higher than those of the sparser canopy cover

Fig. 7. Scatterplot of hourly latent heat flux estimates from the CS (left) and DS (right) VDA schemes versus measurements at the Arou, Daman, and Sidaoqiao sites
for DOYs 121–273 in 2015.
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(LAI < 1). The denser canopy cover reduces the available energy at the
soil surface, causing a reduction in the soil temperature. Reduced soil
temperature results in a decrease in the difference between the soil
temperature (TS) and air temperature (TW) within the canopy, ulti-
mately causing a decrease in the soil sensible heat flux. Therefore, EFS
tends to be higher for dense vegetation cover. Fig. 5 also shows the
effect of plant functional type on the EFS-, EFc-, and EF-soil moisture
relationship. EFS values for the forest are higher than those of shrub,
grass, and cropland because forests typically have a denser vegetation
cover than shrub, grass, and cropland. EFC values for the forest in-
creases more sharply than those of shrub, grass, and cropland because
the deeper roots of forest can uptake deep soil moisture, leading to a
larger transpiration. In contrast, EFS estimates for both of the plant
functional types have almost the same rate of increase, and EFS values
for the forest are higher than those of shrub, grass, and cropland be-
cause forests usually have a denser vegetation cover. As anticipated, EF
of forest rises more sharply with soil moisture because of its deeper
roots.

4.4. Sensible and latent heat fluxes

Fig. 6 compares the hourly sensible heat flux estimates from the CS
and DS VDA schemes with the measurements at the Arou, Daman, and

Sidaoqiao sites. Similarly, Fig. 7 shows this comparison for latent heat
flux. As indicated, the retrieved sensible and latent heat fluxes from the
CS and DS models agree well with the observations, and mainly fall
around the 1:1 line. The DS model performs slightly better than the CS
model because the DS scheme represents the physics of the problem
more robustly than the CS model. The statistics of turbulent heat flux
estimates at the three sites are summarized in Tables 3a and 3b. For
sensible heat flux, the three-site-averaged bias (RMSEs) from the CS and
DS schemes are 16.22 (37.44) and 3.03 (30.02) Wm−2, respectively.
For latent heat flux, the three-site-averaged bias (RMSE) is 50.28
(94.30) Wm−2 for the CS model, and 30.29 (74.15) Wm−2 for the DS
scheme. The low bias and RMSE values indicate that the CS and DS
schemes can accurately estimate turbulent heat fluxes over various
vegetative and hydrological conditions. The statistical metrics show
that the decomposition of the surface into the vegetation and soil by the
DS model improves the turbulent heat fluxes estimates compared to the
CS model. As indicated in Tables 3a and 3b, the mean absolute percent
errors (MAPEs) of turbulent heat fluxes estimates from the CS and DS
models at the Arou site, with higher precipitation and denser vegetation
cover (LAI= 2.7), are larger than those at the Sidaoqiao site with lower
precipitation and sparser canopy cover (LAI= 0.6). In fact, both the CS
and DS VDA approaches perform better in relatively dry and/or slightly
vegetated conditions (e.g., Sidaoqiao site). In contrast, performance of
the CS and DS VDA approaches degrade in wet and/or densely vege-
tated conditions (e.g., Arou and Daman sites). In dry and/or slightly
vegetated sites, the drying rate is mainly controlled by the land surface
state variables (i.e., LST and LAI). In contrast, the drying rate is mainly
affected by the atmospheric state variables (i.e., air temperature and
specific humidity) in wet and/or densely vegetated sites (Shokri et al.,
2008a, 2008b). As a result, the VDA approach (that retrieves the op-
timum values of CHN and EF by assimilating LST data) performs better
at dry/slightly vegetated sites (Crow and Kustas, 2005; Xu et al., 2014,
2016).

The discrepancies between the model estimates and observations
are mainly due to the model physical assumptions (constant soil
thermal conductivity (K) and heat capacity (c), daily constant EF, EFC,
and EFS, monthly constant CHN, and measurement errors), and un-
certainties in the model inputs (e.g., atmospheric variables, LST, and
LAI). Remotely sensed LST and LAI data contain noise, which adversely
affects the performance of the VDA approach. The readers are referred
to Xu et al. (2014) for a detailed sensitivity analysis on the impact of
uncertainties in LST and LAI on the turbulent heat fluxes estimates from
the VDA approach. Moreover, this study uses the radiometric LST
provided by the MODIS product in lieu of the aerodynamic LST.
However, there is a difference between the radiometric and aero-
dynamic LSTs, which results in errors in the turbulent heat fluxes es-
timates (Norman and Becker, 1995; Voogt and Grimmond, 2000). Fu-
ture studies should examine uncertainties in the H and LE estimates due
to assimilating radiometric LST data in the VDA system.

Figs. 6 and 7 also show that LE estimates are more scattered around
the 45-degree line compared to H retrievals. This is because the un-
certainty of H estimates is due to errors in the CHN and LST estimates
(see Eq. (5)), while the uncertainty of LE estimates is because of errors
in the CHN, EF, and LST estimates (see Eq. (6)). More sources of errors
increase the uncertainty of estimated LE values. In addition, H mea-
surements are obtained by the LAS instrument (Liu et al., 2011), while
LE observations are obtained as the residual of the SEB equation (i.e.,
LE= RN−H−G), which may lead to errors in LE observations.

The bias, RMSE, and MAPE of the turbulent heat fluxes estimates
from the open-loop and VDA models at the three experimental sites are
summarized in Tables 3a and 3b. The open-loop model does not as-
similate MODIS LST data. The lower bias, RMSE, and MAPE values from
the CS and DS VDA approaches imply that the assimilation of MODIS
LST data improves the turbulent heat fluxes estimates. In the CS (DS)
VDA scheme, the RMSE of H estimates decreases from 55.51Wm−2

(48.23Wm−2) to 37.44Wm−2 (30.02Wm−2) by assimilating MODIS

Table 3a
Statistical indices of hourly H estimates from the CS and DS open-loop and VDA
models at the three experimental sites.

Site Statistical metric CS DS

Open-loop VDA Open-loop VDA

Arou Bias (Wm−2) 24.31 14.07 19.15 −4.41
MAPE (%) 43.41 35.30 35.54 26.72
RMSE (Wm−2) 50.61 30.19 45.59 23.14
R2 0.58 0.66 0.65 0.72

Daman Bias (Wm−2) 28.12 21.89 25.69 10.29
MAPE (%) 53.33 45.19 50.42 35.64
RMSE (Wm−2) 55.32 39.42 49.55 28.09
R2 0.47 0.61 0.51 0.72

Sidaoqiao Bias (Wm−2) 18.98 12.70 15.34 3.22
MAPE (%) 40.28 33.84 35.61 23.67
RMSE (Wm−2) 60.59 42.72 49.54 38.84
R2 0.42 0.67 0.55 0.73

Three-sites-average Bias (Wm−2) 23.80 16.22 20.06 3.03
MAPE (%) 45.67 38.11 40.52 28.68
RMSE (Wm−2) 55.51 37.44 48.23 30.02
R2 0.49 0.65 0.57 0.72

Table 3b
Statistical indices of hourly LE estimates from the CS and DS open-loop and
VDA models at the three experimental sites.

Site Statistical metric CS DS

Open-loop VDA Open-loop VDA

Arou Bias (Wm−2) 45.32 36.15 40.21 6.75
MAPE (%) 46.85 35.08 39.54 25.69
RMSE (Wm−2) 150.52 115.85 132.41 84.88
R2 0.49 0.59 0.53 0.62

Daman Bias (Wm−2) 61.22 46.69 56.91 22.70
MAPE (%) 39.54 26.52 50.21 21.57
RMSE (Wm−2) 115.25 84.43 110.25 61.45
R2 0.49 0.66 0.55 0.75

Sidaoqiao Bias (Wm−2) 95.41 68.01 82.45 61.42
MAPE (%) 41.25 31.44 40.38 20.48
RMSE (Wm−2) 100.02 82.61 93.51 76.11
R2 0.45 0.68 0.53 0.71

Three-sites-average Bias (Wm−2) 67.32 50.28 59.86 30.29
MAPE (%) 42.55 31.01 43.38 22.58
RMSE (Wm−2) 121.93 94.30 112.06 74.15
R2 0.48 0.64 0.54 0.69
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LST data. Similarly, the RMSEs of LE estimates from the CS and DS
models are reduced by 22.66% and 33.83%, by assimilating LST data.

Fig. 8 shows the time series of observed and estimated daytime-
averaged (0900–1800 LT) H and LE over the Arou (grassland), Daman
(cropland), and Sidaoqiao (shrub-forest) sites during DOYs 121–273,
2015. As indicated, the CS and DS model estimates are consistent with

the observations in terms of both magnitude and day-to-day dynamics,
implying that assimilating MODIS LST data can reliably partition the
available energy between the sensible and latent heat fluxes. Results
from the DS model are closer to the observations compared to those of
the CS model. LE increases rapidly in the early stage of the growing
season (DOYs 121–181) and reaches its maximum in mid-July (around

Fig. 8. Time series of daytime-averaged (0900-1800 LT) H and LE estimates from the CS (dashed lines) and DS (solid lines) VDA models at the Arou, Daman, and
Sidaoqiao sites. H and LE observations are shown by open circles.
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DOY 200) at the Arou, Daman, and Sidaoqiao sites. Then, the vegeta-
tion density and LE gradually reduce. The turbulent heat flux estimates
degrade during the wet or densely vegetated periods (e.g., DOYs
180–210 at the Arou site and DOYs 195–240 at the Daman site). At the
Daman site, the daytime-averaged latent heat flux measurements in-
crease to approximately 400Wm−2 during the wet period (DOYs
200–220). However, LE estimates cannot reach 400Wm−2 because the
upper bounds of EF (in the CS model), and EFS and EFC (in the DS
model) are set to 0.99 to avoid numerical instabilities.

Fig. 9 shows the monthly mean H estimates from the CS (first row)
and DS (second row) VDA schemes as well as their relative difference
(third row) over the HRB during the growing season (May–September).
Similarly, Fig. 10 indicates the CS and DS monthly mean LE estimates,
and their relative difference. The H (LE) values are higher (lower) in
barren areas than grasslands, croplands, and forest. Over the barren
regions in the north, H increases from May to July, and decreases from
July to September due to the seasonal variation in the incoming solar
radiation. LE increases from May to July and then decreases from July
to September over the vegetated land covers (i.e., grassland, forest, and
cropland), but it is relatively constant over the barren areas due to low
precipitation. In the upstream of the HRB, the spatial patterns of re-
trieved latent heat flux consistently resemble the features in the rainfall
and vegetation cover. Regions and periods with higher precipitation
and dense vegetation have correspondingly higher LE values. In the
midstream of the HRB, the spatial patterns of LE agree well with the
oasis areas caused by the crop irrigation. In the north and center of the

HRB (where fc is almost zero), the turbulent heat fluxes estimates from
the CS and DS methods have a small relative difference, but the relative
difference increases toward the south of the HRB (where fc is mostly
non-zero).

Fig. 11 shows the relative difference of H and LE estimates from the
CS and DS models for different fc values over the HRB. The maximum
relative difference occurs for fc of ~0.55. When fc is ~0.55, the surface
heterogeneity reaches its peak, and the CS model cannot describe the
physics of the problem as accurately as the DS model. Hence, the dif-
ference between the turbulent heat fluxes estimates from the CS and DS
models finds its maximum value. When fc is ~0.1, the land surface
patchiness is low because the land surface is mainly composed of bare
soil. Hence, the discrepancy between the results of the CS and DS
models has its lowest value, which is mainly due to the different model
structures.

Fig. 12 shows variations of land cover type, air temperature, eva-
potranspiration (ET), and precipitation with elevation over the moun-
tainous areas upstream of the HRB. The area of the four major vege-
tation types (i.e., cropland, forest, grassland, and shrubland) increases
with the altitude in elevations ranging from 1000 to 3000m. The pat-
terns in vegetation cover are closely related to the precipitation varia-
tions. For altitudes ranging from 1000 to 3000m, ET increases with
elevation due to the increase in vegetation coverage and precipitation.
The highest ET values occur at altitudes ranging from 2800 to 3200m
where vegetation coverage and precipitation reach their peak values.
For elevations higher than 3000m, precipitation and vegetation

Fig. 9. Maps of monthly mean H estimates from the CS (first row) and DS (second row) VDA approaches. The relative difference of H estimates from the CS and DS
models ((HDS-HCS)/HDS×100) is shown in the third row. HDS and HCS denote the sensible heat flux estimates from the DS and CS models, respectively.
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coverage decrease, and consequently ET is reduced. The runoff flows
from higher to lower altitudes, causing higher ET than precipitation at
elevations < 1600m. Fig. 12 also shows that the air temperature
gradually decreases with the increase in elevation. The vegetation cover
reaches its peak over the altitudes ranging from 2800 to 3200m (where
the air temperature is around 7 °C). This is consistent with Cui's (2013)
finding that the optimal temperature for the vegetation growth in the
Tibetan Plateau area is about 7 °C.

4.5. Effects of LST temporal sampling on the H and LE estimates

A number of numerical tests are conducted to evaluate the effect of
LST temporal sampling on the partitioning of the available energy be-
tween the sensible and latent heat fluxes. Using different sampling
strategies, the ground-measured LSTs in the Daman site are assimilated
into the new (that uses EF values from Eq. (14) as the initial guess) and
Bateni et al. (2013a) VDA models for DOYs 121–273, 2015.

The first numerical test is implemented by assimilating the LST
observation once per day, which is sampled from the hourly LST
measurements in the assimilation window (i.e., 0900 to 1800 LT).
Fig. 13 shows the MAPE of H and LE estimates from this study (solid
lines) and Bateni et al. (2013a) (dashed lines) for different LST assim-
ilation times. H and LE estimates from this study have a lower MAPE

Fig. 10. Maps of monthly mean LE estimates from the CS (first row) and DS (second row) VDA approaches. The relative difference of LE estimates from the CS and DS
models ((LE DS- LE CS)/LE DS×100) is shown in the third row. LE DS and LE CS denote the latent heat flux estimates from the DS and CS models, respectively.

Fig. 11. The relative difference of turbulent heat fluxes estimates from the CS
and DS models for different vegetation fraction (fc) values.
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than those from Bateni et al. (2013a) for all the LST assimilation times.
As indicated in Fig. 13, the MAPEs of H and LE estimates reach the
lowest value when the LST measurement at 14:00 LT is assimilated,
implying that LST around noon has the most amount of information for
partitioning the available energy between the sensible and latent heat

fluxes. This occurs because LST around noon reaches its maximum
value, and hence has a vital role in characterizing the diurnal cycle of
LST. When LST is assimilated at 1400 LT, the MAPEs of H and LE es-
timates from Bateni et al. (2013a) are 28.77% and 51.57%, respec-
tively. By parameterizing EF in terms of τ in this study, the MAPEs of H

Fig. 12. Changes in land cover type, air temperature, ET, and precipitation with elevation over mountainous areas in the upstream of HRB in 2015.

Fig. 13. MAPEs of H (left) and LE (right) estimates from the CS and DS VDA approaches versus the hour of day in which LST is assimilated (in each day, LST is
assimilated only once). The solid lines represent results from this study, and the dashed lines show results from Bateni et al. (2013a). Lines with symbols show results
from the DS model, and lines without symbols indicate outcomes from the CS model.
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and LE estimates are reduced to 25.18% and 27.48%, respectively.
Overall, the MAPEs of H and LE estimates from this study are less than
those of Bateni et al. (2013a). This is due to the fact that our study
parameterizes the a priori EF in terms of ATI and LAI via Eqs. (14),
(15a) and (15b), and uses it as the initial guess in the VDA approach to
obtain the a posteriori (optimal) EF estimate. While, Bateni et al.
(2013a) did not characterize the a priori EF and used a constant value
of 0.7 as the initial guess for EF in the VDA method. As expected, the
MAPEs of H and LE estimates from the DS scheme are lower than those
of the CS model.

The second numerical experiment assimilates LSTs at multiple times
during each day (Table 4). For example, in the first attempt, LST is
assimilated at 14:00 LT (the first row in Table 4), and in the second try,
LSTs are assimilated at 13:00 and 14:00 LT (the second row in Table 4).

Fig. 14 shows the MAPEs of H and LE estimates by assimilating LST
observations multiple times per day. In this figure, 1, 2, 3, …, 10 imply
that LST is assimilated once, twice, 3 times, …, 10 times in each day, at
the specified time(s) in Table 4. As anticipated, the MAPEs from the CS
and DS VDA models are reduced by increasing the number of assimi-
lated LST observations. The MAPEs of H and LE estimates decrease
significantly when the number of assimilated LSTs increases from 1 to
3, but reduce slightly when there are> 3 LST assimilations per day.
Also, the MAPE from this study is less than Bateni et al. (2013a), in-
dicating that the VDA approach with a better initial guess for EF can
perform more accurately.

5. Conclusions

Turbulent heat fluxes are estimated by the variational assimilation
of low temporal resolution land surface temperature (LST) data from
polar orbiting satellites into both the combined-source (CS) and dual-
source (DS) surface energy balance (SEB) schemes. An expression is
developed to estimate an a priori EF in terms of leaf area index (LAI)
and/or apparent thermal inertia (ATI). The a priori EF estimate is used
in the VDA approach to find a posteriori (optimal) EF estimate.

The CS and DS VDA approaches are tested over the Heihe River
Basin (HRB) in northwestern China, which samples a wide range of
hydrological and vegetative conditions. The MODIS LST data with
1 km×1 km spatial resolution and 2-revisit during the daytime are
assimilated into the CS and DS VDA approaches. The results show that
the neutral heat transfer coefficient (CHN) estimates increase with the
increase of vegetation coverage fraction. Also, the spatial patterns of
estimated daily soil evaporative fraction (EFs) maps are consistent with
those of the Soil Moisture Active Passive (SMAP) soil moisture product.
The estimated sensible and latent heat fluxes from the CS and DS VDA
models are validated with the large aperture scintillometer (LAS) ob-
servations at the Arou (grassland), Daman (cropland), and Sidaoqiao
(shrub-forest) sites in the upstream, midstream, and downstream of the
HRB, respectively. For the CS VDA approach, the three-site-averaged
root mean square error (RMSE) is 37.44Wm−2 for sensible heat flux,
and 94.30Wm−2 for latent heat flux. The DS VDA model reduces the
aforementioned RMSEs by 19.82% and 21.37% because it takes into
account the interaction between the soil and the canopy. All of these
results show that the proposed VDA approach performs well with the
assimilation of low temporal resolution MODIS LST data in lieu of the
high temporal resolution LST data from geostationary satellites.

The numerical experiments show that LST observations around
noon (i.e., when LST reaches its maximum) have more information on
the partitioning of the available energy between the turbulent heat
fluxes. This happens because the maximum LST has a key role in
characterizing the diurnal cycle of LST. The numerical experiments also
indicate that the mean absolute percentage errors (MAPEs) of sensible
and latent heat fluxes estimates decrease when the number of LST as-
similations in each day increases. The MAPE from this study is less than
that of Bateni et al. (2013a) if the same number of LST observations is
assimilated. This indicates the new VDA approach can estimate the
turbulent heat fluxes more accurately.

Table 4
Number (per day) and local time of assimilated LSTs.

Number of assimilated LSTs Local time(s) of assimilated LSTs

1 14:00 LT
2 13:00–14:00 LT
3 13:00–15:00 LT
4 12:00–15:00 LT
5 12:00–16:00 LT
6 11:00–16:00 LT
7 11:00–17:00 LT
8 10:00–17:00 LT
9 10:00–18:00 LT
10 9:00–18:00 LT

Fig. 14. MAPE of H (left) and LE (right) estimates from the CS and DS VDA approaches versus the number of assimilated LST observations. The solid lines represent
results from this study, and the dashed lines show results from Bateni et al. (2013a). Lines with symbols show results from the DS model, and lines without symbols
indicate outcomes from the CS model.
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Appendix A

Table A1
The utilized symbols in equations of this study, and their definition.

Symbol Definition

A Amplitude of diurnal temperature cycle
ATI Apparent thermal inertia
c Soil heat capacity
cp Air heat capacity
C Solar correction factor
CH Heat transfer coefficient
CHN Neutral heat transfer coefficient
CHS Neutral heat transfer coefficients from leaves to air within the canopy
CHC Neutral heat transfer coefficients from soil to air within the canopy
D Heat diffusion coefficient
EF Evaporative fraction
EFS Soil evaporative fraction
EFC Canopy evaporative fraction
fc Vegetation cover fraction
G Ground heat flux
H Sensible heat flux
HS Sensible heat flux for soil
HC Sensible heat flux for canopy
K Soil heat conductivity
LAI Leaf area index
LE Latent heat flux
LES Latent heat flux for soil
LEC Latent heat flux for canopy
LST Land surface temperature
nd Day number
Ri Richardson number
RN Net radiation
RNS Net radiation for soil
RNC Net radiation for canopy
RS↓ Incoming shortwave radiation
RL↓ Incoming longwave radiation
T Land surface temperature estimates from the heat diffusion equation
T Daily mean surface temperature
Ta Air temperature
TOBS Land surface temperature observations
TS Soil temperature
TC Canopy temperature
TW Air temperature within the canopy
U Wind speed
UW Wind speed within the canopy
α Surface albedo
αs Surface albedo for soil
αc Surface albedo for canopy
ε Surface emissivity
εs Soil emissivity
εc Canopy emissivity
σ Stefan-Boltzmann constant
ρ Air density
ϕ Latitude
φ Calibration coefficient
τ Environmental index
Λ Lagrange multiplier
δ Solar declination
Г Day angle
ω Angular velocity of Earth's rotation
ψ Phase angle
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