Le Paradoxe de Thib Dossier mathématique complet

Auteur: Pascal Thibodeau

Affiliation: Indépendant, Sorel■Tracy, Québec, Canada

Date: Septembre 2025

Site web: https://kshiotsn.gensparkspace.com

Objectif. Ce document expose, de manière pédagogique mais rigoureuse, l'intégralité des composantes mathématiques du *Paradoxe de Thib*: inférence bayésienne, utilité espérée, valeur d'information (EVSI), règles de seuil sous coûts/bénéfices asymétriques, score opérationnel, agrégation multi∎signaux, et calibration. Les formules sont données avec notations claires, dérivations, sensibilités et exemples numériques.

Symbole	Définition (unité)
H■/H■	Hypothèse d'intérêt (artificiel / nouvelle physique) vs hypothèse naturelle
D	Données/observations disponibles
$K = p(D H\blacksquare)/p(D H\blacksquare)$	■)Facteur de Bayes (rapport de vraisemblance)
O ■ = p(H ■)/p(H ■)	Odds a priori
O ■ = K-O ■	Odds a posteriori
$\pi = p(H\blacksquare D) = O\blacksquare/($	1-Pû ⊞)abilité a posteriori de H■
С	Coût marginal de l'investigation
B, b	Bénéfice attendu si H■ vrai (B) ; si H■ vrai (b ≥ 0)
EVSI	Valeur d'information attendue (pré∎investigation)
S	Score opérationnel A·I·R·U/(C·P)
A, I, R, U	Intensité d'anomalie, information, risque/réversibilité, urgence
Р	Pénalité a priori ~ 1/O■ (ou fonction croissante en 1/O■)

1. Noyau bayésien : facteur de Bayes, odds et postérieur

On compare deux hypothèses $H \blacksquare$ et $H \blacksquare$. À partir de données D, le facteur de Bayes est $K = p(D | H \blacksquare) / p(D | H \blacksquare)$. Les odds a priori sont $O \blacksquare = p(H \blacksquare)/p(H \blacksquare)$. Le théorème de Bayes en écriture d'odds donne $O \blacksquare = K \cdot O \blacksquare$. La probabilité a posteriori de $H \blacksquare$ est alors $\pi = O \blacksquare / (1 + O \blacksquare)$. En pratique, on travaille souvent en log \blacksquare espace : log K, $log O \blacksquare$ et $log O \blacksquare = log K + log O \blacksquare$.

2. Règle de décision par utilité espérée

On note $\mathbb C$ le coût marginal d'une étape d'investigation (heures télescope, analyses), $\mathbb B$ le bénéfice si $H\blacksquare$ est vrai (découverte à haute valeur), et $\mathbb B$ le bénéfice si $H\blacksquare$ est vrai (clarification à valeur scientifique). L'accroissement d'utilité espérée d'une investigation est $\Delta \mathbb B \mathbb B + (1-\pi) \cdot \mathbb B - \mathbb C$. La **règle optimale** est : investiguer si $\Delta \mathbb B \mathbb B > \mathbb B$ 0. En isolant $\mathbb B > \mathbb B$ et $\mathbb C > \mathbb B$). (valide si $\mathbb B > \mathbb B$)

En réécrivant en fonction du facteur de Bayes, la condition se formule $K > \tau$ avec $\tau = [(C - b)/(B - b)] \cdot (1/0)$. Cas conservateur (quand b est négligeable): $\tau \approx (C/B) \cdot (1/0)$. En log: $\log K > \log \tau$.

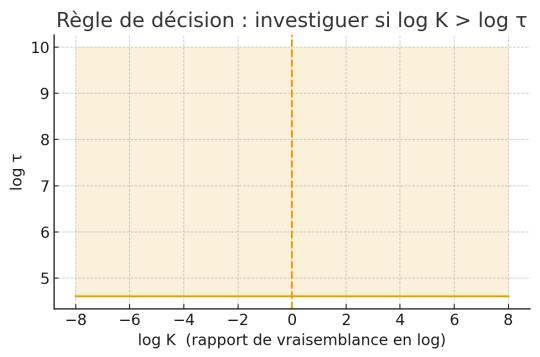


Figure 1. Région d'action : investiguer lorsque $log K > log \tau$.

3. Valeur d'information attendue (EVSI)

Avant d'engager une mesure M (p.ex. un créneau spectroscopique), on estime l'EVSI: le gain d'utilité espérée dû à l'actualisation de π après M, moins le coût de M. La règle de décision séquentielle est : acquérir M si EVSI(M) > Coût(M). Dans les problèmes Σ étapes, on applique un raisonnement itératif « one step look habead » : on choisit la prochaine action à EVSI net maximal, et on rélévalue après observation. Cela évite la myopie et formalise l'urgence lorsque les fenêtres d'observation se ferment.

4. Score opérationnel S et équivalence bayésienne

Pour l'usage quotidien, on pose $S = (A \cdot I \cdot R \cdot U) / (C \cdot P)$ et l'on enquête si S > 1. Ici, A (anomalie) est un proxy croissant de K (par ex. $A = \exp(\alpha \cdot LLR)$ avec $LLR = \log K$), I approxime l'EVSI de la prochaine mesure clé, R encode la réversibilité/risque (≥ 1 si réversible), U capture l'urgence (fenêtre courte $\Rightarrow U > 1$), C est le coût marginal, et P est une pénalité issue des a priori (p.ex. $P \propto 1/O\blacksquare$). Sous un calibrage monotone, la règle S > 1 est équivalente à $K > \tau$.

5. Agrégation multi∎signaux

Si des signaux (indépendants conditionnellement) $D \blacksquare , ..., D_m$ sont disponibles, les facteurs de Bayes s'agrègent multiplicativement : $K_{total} = \prod K_i (ou \log K_{total} = \Sigma \log K_i)$. En cas de dépendances, on pondère ou on modélise explicitement les corrélations (graphes bayésiens). Une bonne pratique consiste à limiter la redondance et à valider la robustesse par analyses de sensibilité.

6. Calibration et échelles

- Calibration a priori : fixer ○■ par expertise (plausibilité physique, fréquence attendue d'artefacts).
- Calibration anomalie $\to K$: définir une carte $A \blacksquare K$ (p.ex. $\log K = \alpha \cdot A \beta$) via rétro \blacksquare analyse de cas historiques.
- Coûts/bénéfices : exprimer B, b, C dans une même unité utilité équivalente (p.ex. « heures téléscope normalisées »).
- Seuils explicites : publier τ et sa décomposition pour transparence et audit scientifique.

7. Sensibilité et élasticités

En log espace, la condition est LLR $\equiv \log K > \log \tau = \log(C - b) - \log(B - b) - \log O$. Les élasticités montrent comment bouge la frontière décisionnelle : augmenter B ou O \perp 4 baisse le seuil,

augmenter c ↑le relève. Un tableau de bord peut tracer log τ versus ces paramètres pour des audits rapides.

8. Exemple chiffré (vérifié)

Hypothèses de travail : O = 1.0e-04, B = 1.0e+06, b = 1.0e+03, C = 1.0e+04 (unités arbitraires mais homogènes). Seuil général : $\tau = ((C-b)/(B-b)) \cdot (1/O = 9.009e+01$, donc $\log \tau = 4.501$. Règle : investiguer si $\log K > 4.501$.

9. Implémentation pas∎à∎pas

- 1) Fixer o■ (atelier d'experts, bornes plausibles).
- 2) Définir l'unité d'utilité commune et chiffrer B, b, C.
- 3) Choisir la carte A■K et la calibrer (rétro■analyse).
- 4) Construire le tableau de bord $S = (A \cdot I \cdot R \cdot U) / (C \cdot P)$ et publier τ .
- 5) En exploitation : agréger les signaux ($\Sigma \log K_i$), évaluer EVSI de la prochaine mesure, décider si EVSI > Coût.
- 6) Journaliser toutes les décisions et ré

 ajuster les calibrations trimestriellement.

10. Limites et garde∎fous

- Risque de sur

 investigation si B est surestimé ; imposer des bornes et audits externes.
- Cartes AMK non universelles; documenter le contexte d'application.
- Dépendances entre signaux ; préférer des modèles graphiques quand c'est critique.
- Éthique : publier la décomposition de τ et les journaux de décision pour re∎lecture par les pairs.

Références & lectures utiles

- Notes internes « Paradoxe de Thib » (2025).
- Litterature standard sur décision bavésienne, utilité espérée et EVSI.
- Études de cas ISO (11/'Oumuamua, 21/Borisov, 31/ATLAS) pour calibration a posteriori.